- Egy rugalmas perovszkit modul, amelynek WVTR ≈ 5,0 × 10⁻³ g/m²/nap, a teljesítményének 84%-át megtartotta 2 000 óra után 85°C/85% relatív páratartalom mellett (Damp-Heat).
- Japán támogatja a Sekisui Chemical-t egy 100 MW-os film-típusú perovszkit üzem felépítésében 2027-ig, hogy 2040-re elérjék a mintegy 20 GW kapacitást.
- Az Anker bemutatott egy perovszkit-meghajtású strandernyőt a CES 2025 rendezvényen.
- Egy rugalmas perovszkit/szilícium tandem 29,88%-os hitelesített hatásfokot ért el egy kis területű kutatási eszközben.
- Egy kínai startup bemutatott egy 1,2 m × 1,6 m-es rugalmas modult, amelynek névleges teljesítménye 260–300 W, tömege pedig 2,04 kg (≈147 W/kg).
- Több gyártó is teljesítette az IEC 61215/61730 megbízhatósági teszteket (beleértve a 3× nedves-hő/termikus ciklust), ami előrelépést jelez a rugalmas modulokra vonatkozó szabványok felé.
- A roll-to-roll gyártás <150°C-on képes eszközöket előállítani, a technogazdasági előrejelzés szerint ~0,7 USD/W áron 1 000 000 m²/év mellett.
- A védőfóliák és élzárások kritikusak; a stratégiák közé tartoznak a PIB ragasztók és az alacsony feszültségű laminálás a termikus/mechanikai károsodás csökkentésére.
- Az ólomkezelési erőfeszítések közé tartoznak a külső védőburkolatok és belső adalékanyagok a Pb immobilizálására, valamint az élettartam végén történő újrahasznosítási tervek.
- Japán épületkülső pilotjai és az Expo 2025 bemutatói azt mutatják, hogy az épületburkolatok, ívelt homlokzatok és hordozható eszközök a közeli célpontok.
Az ultra-vékony perovszkit napelemek, amelyeket rugalmas fóliákra laminálnak, a laborból a piacra kerülnek. Japán nagy összegeket (milliárdokat) fektet be, és megjelentek az első termékek és pilot projektek. Az ígéret: könnyű áramforrás ívelt vagy súlykorlátozott felületeken, gyors, alacsony hőmérsékletű, roll-to-roll gyártással. Az akadályok: tartósság (nedvesség/hő), biztonságos ólomkezelés és bankolható tanúsítás. [1], [2], [3]
Mit értünk „perovszkit alapú fotovoltaikusok rugalmas laminátumokban” alatt
A perovszkitek egy kristályos anyagosztály, amely nagyon hatékonyan alakítja át a fényt elektromos árammá, és alacsony hőmérsékleten, tintákból is feldolgozható. A rugalmas laminátumok ezeket a cellákat polimer védőfóliák és ragasztók közé csomagolják (nehéz üveg helyett), így vékony, könnyű napelemes lapokat hoznak létre, amelyek hajlíthatók és alkalmazkodnak olyan felületekhez, mint a homlokzatok, membránok, járművek, sátrak és IoT eszközök. [4][5] [6]
Egy tipikus rugalmas rétegrend így néz ki (elölről hátrafelé):
- átlátszó polimer hordozó (pl. PET vagy PI) vékony vezető réteggel,
- elektron/lyuk transzportrétegek,
- a perovszkit abszorber,
- egy vékony hátsó elektróda (fém, szén vagy átlátszó vezető),
- tokozó ragasztó (POE/EVA/PIB, stb.),
- ultrabarrier hátfólia (hogy kizárja a vizet/oxigént), plusz élzárások. [7], [8]
Miért számítanak a laminátumok: a vízgőz gyorsan károsítja a perovszkitekat, így a gát vízgőz-áteresztési sebessége (WVTR) és a laminálási folyamat határozza meg az élettartamot. A legutóbbi tesztekben a tanulmányban szereplő legszorosabb gátat használó modulok (WVTR ≈ 5,0 × 10⁻³ g/m²/nap) megtartották teljesítményük 84%-át 2 000 óra után 85 °C/85% RH (Damp‑Heat) körülmények között. A gyengébb gátak sokkal hamarabb tönkrementek. [9]
Mi változott 2024–2025-ben?
- Japán nemzeti törekvése. A kormány támogatja a rugalmas perovszkiteket, hogy kihívást jelentsen Kína PV-dominanciájára, beleértve jelentős támogatásokat a Sekisui Chemical számára egy 100 MW film-típusú perovszkit üzem felépítésére 2027-ig. Japán célja ~20 GW perovszkit kapacitás 2040-re. [10], [11], [12]
- Első fogyasztóközeli bemutatók. Az Anker bemutatott egy perovszkit-meghajtású strandsátrat a CES 2025-ön (a marketing állítások merészek és függetlenül nem igazoltak), ami azt mutatja, hogy a perovszkitek hogyan tudnak ívelt, hordozható eszközöket működtetni. [13]
- Rugalmas hatékonysági rekordok. Kutatók 29,88% hitelesített hatékonyságot jelentettek egy rugalmas perovszkit/szilícium monolit tandem (kis területű, kutatási eszköz) esetében — ez a mérföldkő szűkíti a különbséget a rugalmas és a merev között. [14]
- Nagyobb, rugalmas modulok. Egy kínai startup bemutatott egy 1,2 m × 1,6 m méretű, rugalmas modult, amelynek névleges teljesítménye 260–300 W, és mindössze 2,04 kg (~147 W/kg), ami nagy fajlagos teljesítményt jelez súlykorlátozott felületeken. (Gyártói állítások; korai fázis.) [15]
- A bankképesség felé. Több kínai gyártó számolt be arról, hogy megfelelt a IEC 61215/61730 megbízhatósági előírásoknak (sőt, akár 3× gyorsított öregedési teszten is) — eddig főként merev perovszkit modulokra, de ez gyors előrelépést jelez a szabványosított tartósság felé. [16]
„Amikor egy technológia nagyon korai szakaszában van, lehetőség van arra, hogy jobban megtervezzük.” — Joey Luther, NREL. [17]
Hogyan készülnek a rugalmas perovszkit laminátumok (és miért az enkapszuláció a döntő tényező)
- Alacsony hőmérsékletű eszközgyártás
A perovszkit rétegek és érintkezők nyomtathatók vagy bevonhatók <150 °C-on, és roll‑to‑roll eszközökkel skálázhatók — ugyanaz a gyártási logika, mint a csomagolásnál vagy akkumulátor fóliáknál. Egy 2024-es technoökonómiai tanulmány szerint a teljesen R2R perovszkitok ~$0,7/W költséggel készülhetnek 1 000 000 m²/év mellett, további költségcsökkenési lehetőséggel a gyártósorok bővülésével. [18] - Laminálás és ragasztók
A hagyományos PV laminálás (üvegmoduloknál) ~150–160 °C-on történik POE/EVA keresztkötéssel. Ez a hőmérséklet károsíthatja a perovszkitokat, ezért két stratégia alakult ki:- A cella mérnöki tervezése, hogy kibírja a vákuumlaminálást 150 °C-on (pl. belső diffúziós gátak, ALD SnOₓ), vagyA laminálási stressz/hőmérséklet csökkentése viszkoelasztikus PIB-alapú ragasztókkal vagy szobahőmérsékletű/alacsony nyomású eljárásokkal, csökkentve a termikus/mechanikai sokkot. [19], [20], [21]
- Gátló fóliák és élzárások
A nedvesség a meghibásodás fő oka. A kiváló minőségű gátló fóliákon (gyakran többrétegű szervetlen/szerves rétegek) túl az élzárók (pl. butil) és az ragasztó kémiai anyagok úgy vannak hangolva, hogy blokkolják a vizet és rögzítsék az ólmot, ha sérülés történik. 2024–2025-ben több áttekintés és tanulmány sorolja fel az erős tokozó jelölteket és az ólom-megkötési stratégiákat. [23], [24], [25]
„A perovszkit napelemek… egyedi lehetőségeket kínálnak… Azonban a stabilitásuk… gyengébb a hagyományos anyagokhoz képest, amely javítható… gátló fóliákkal történő tokozással.” — Prof. Takashi Minemoto, Ritsumeikan Egyetem. [26]
Teljesítmény pillanatkép (2025)
- Laboratóriumi méretű, rugalmas tandemek:29,88% tanúsított (perovszkit/szilícium, kis felület). [27]
- Egyrétegű modulok kereskedelmi forgalmazása: Jelentett rugalmas modulok 260–300 W teljesítménnyel, 2,04 kg tömeggel; mások 18,1% modulszintű hatásfokot (merev) jelentettek, NREL által igazolva – ami gyors modulszintű fejlődést jelez. [28]
- Mechanikai tartósság: Rugalmas cellák, amelyek ~96% hatásfokot tartottak meg 10 000 hajlítás után, 5 mm sugarú körön, 2024-es kutatás szerint; vékony szilíciummal rendelkező tandemek 2 000 hajlítási ciklus után is megtartották teljesítményüket. (A tesztelési elrendezések eltérőek lehetnek.) [29][30]
„A kompozit anyagok fogalmát bevezettük az interfésztervezésbe… olyan eredményeket értünk el, amelyek hagyományos interfészmérnökséggel elérhetetlenek.” — Dr. Guo Pengfei, HKUST. [31]
Hol alkalmazhatók legjobban a rugalmas laminátumok
- Épületburkolatok / membránok—súlykorlátozott tetők, ívelt homlokzatok, ideiglenes szerkezetek. Japánban fólia típusú perovszkitokat teszteltek épületek külső felületein, az Expo 2025 pedig perovszkitfóliákat mutat be köztereken. [32], [33]
- Járművek és mobilitás—íves felületek (tetők, burkolatok), utánfutók és drónok profitálnak a magas W/kg arányból és a formához igazíthatóságból. [34]
- Hordozható eszközök és IoT—esernyők, sátrak, táblák és alacsony fogyasztású eszközök, ahol a gyenge fényre adott válasz és a forma fontosabb, mint az abszolút $/W. [35]
Biztonság és fenntarthatóság: az ólomkérdés (és valódi megoldások)
A legtöbb nagy teljesítményű perovszkit kis mennyiségű ólmot tartalmaz. Kockázat akkor jelentkezik, ha egy modult eltörnek és beáztatnak. A kockázat csökkentésére a következő megoldások léteznek:
- Külső: szoros zárású fóliák + erős élzárások + ólomkötő tokozóanyagok, amelyek rögzítik a Pb-t, ha a laminátum megsérül.
- Belső: adalékok és segédanyagok, amelyek megkötik az ólmot a perovszkit mikroszerkezetén belül; újrahasznosítást elősegítő tervezés az élettartam végén. [36], [37], [38]
Bankképesség & szabványok: milyen lesz a „jó”
- Modultesztek: Az IEC 61215/61730 teljesítése az alapkövetelmény a kültéri PV-hez. 2025-ben a gyártók jelentettek tanúsítványokat (többnyire merev perovszkitek esetén), beleértve a háromszoros öregedési tesztet (3× nedves-hő/termikus ciklus), ami erős jelzés a tartósságra. A rugalmas moduloknak hasonló vagy adaptált kritériumoknak kell megfelelniük, ahogy a szabványok fejlődnek. [41]
- Gyártási kompatibilitás: A szabványos vákuum laminálás ~150 °C-on megterheli a perovszkiteket — ezért vagy laminálástűrő eszközrétegeket kell használni, vagy alacsony terhelésű ragasztókat/préseket. [42][43]
- Gát teljesítmény: Kontrollált vizsgálatok közvetlenül összekapcsolják a WVTR-t a nedves-hő túléléssel; válasszunk ultra-alacsony WVTR-ű fóliákat és bevált élzárásokat. [44]
Költségek & gazdaságosság (korai, de biztató)
- Feltörekvő R2R gyártósorok (tinta/slot-die, blade, PVD/ALD a kontaktokhoz) nagyban elérhetik a ~0,7 $/W költséget, további tanulási görbe által vezérelt csökkenésekkel. Az LCOE leginkább a hatékonyságtól és élettartamtól függ; elemzések szerint a perovszkitek akkor válnak igazán vonzóvá, ha a modulok átlépik a ~20–24%-ot és 15–25+ évig tartanak, különösen a könnyű/rugalmas szegmensekben, ahol BOS-megtakarítások érhetők el. [45][46]
Apróbetűs rész: az elmúlt két év tapasztalatai
- Hype kontra megszilárdulás: A valódi előrelépések mellett néhány nagy hírverést kapott, rugalmas úttörő pénzügyi nehézségekkel küzdött (pl. a Saule Technologies súlyos válságról számolt be 2025-ben). A látványos bemutatókat és marketingadatokat kellő körültekintéssel kezelje. [47][48]
- Az állításokat harmadik fél adatainak kell alátámasztania: A korai fogyasztói eszközök (mint például a perovszkit esernyő) figyelemre méltó hatásfokokat említenek, de független ellenőrzés ritka. Kérjen hitelesített tesztjelentéseket. [49]
Így értékeljen ma egy rugalmas perovszkit laminátumot
Kérdezze meg a beszállítókat:
- Tanúsítványok igazolása: IEC 61215/61730 (vagy egyenértékű) tesztjelentések a konkrét termékváltozatra. [50]
- Gát specifikációk: A laminátum és az élzáró rendszer WVTR/OTR értékei; nedvesség-hő (85 °C/85% RH) és UV teszteredmények. [51]
- Termikus folyamatablak: Laminálási hőmérséklet/idő és bizonyíték arra, hogy az eszköz túléli a folyamatot (pl. laminálás előtti/utáni PCE, EL képek). [52]
- Mechanikai adatok: Hajlítási sugár és ciklusszám, amelynél ≥90–95% teljesítmény megmarad. [53]
- Ólomkezelés: Tokozó kémia és ólom-megkötő intézkedések; EHS dokumentáció és életciklus végi újrahasznosítási terv. [54][55]
- Garancia & terepi pilotok: Valós telepítések helyszínei, időtartama és monitorozott teljesítménye (ideális esetben 12–24 hónap+).
Szakértői idézetek, amelyeket használhat
- NREL (fenntarthatóság az első): „A perovszkit PV fenntarthatóságának növelése ebben a szakaszban sokkal ésszerűbb.” — Joey Luther. [56]
- Ritsumeikan Egyetem (a gátak számítanak): „A stabilitás… javítható… gátló fóliákkal történő kapszulázással.” — Takashi Minemoto. [57]
- HKUST (tervezett interfészek): „A kompozit anyagok koncepcióját vezettük be az interfésztervezésbe…” — Guo Pengfei. [58]
Kitekintés: mire érdemes figyelni legközelebb
- Film-típusú gyártósorok felskálázása (pl. Sekisui 100 MW 2027-ig) és a hozamok alakulása R2R gyártásban. [59]
- Bankolható élettartamok: Több független IEC megfelelés (beleértve a hajlékony termékeket is), hosszabb kültéri adatsorok és ≥10–15 éves garanciák. [60]
- Biztonságosabb rétegek: Szélesebb körű ólom-megkötő ragasztók/fóliák alkalmazása és újrahasznosítási logisztika az élettartam végén. [61]
- Hibrid architektúrák: Vékony szilícium + perovszkit tandemek hajlékony hordozókon a nagyobb hatékonyságért a hajlíthatóság feláldozása nélkül. [62]
Aktuális hírek & kulcsjelentések (frissítve: 2025. augusztus 15.)
- Japán 1,5 milliárd dolláros tétje az ultravékony, hajlékony perovszkitek mellett (politika + ipari kiépítés). [63]
- A Qcells nagy felületű perovszkit-szilícium cella áttörésről számol be (fontos a tandemek/jövőbeli laminátumok szempontjából). [64]
- Anker perovszkit esernyője a fogyasztói kísérletezést jelzi (specifikációk nem ellenőrzöttek). [65]
Friss beszámoló: perovszkit PV & rugalmas laminátumok (2025)[66][67]
További olvasnivaló (válogatott kutatások & elemzések)
- Roll‑to‑roll gyártás & költség: Nature Communications (2024) előrejelzése szerint ~0,7 USD/W nagyüzemi méretben. [68]
- Laminálási innovációk: Alacsony feszültségű PIB ragasztók (2024) és izosztatikus préslaminálás (2024). [69]
- Gátlófólia bizonyíték: Nedvesség-hő vizsgálat, amely a WVTR és a túlélés kapcsolatát mutatja (2025). [70]
- Rugalmas tandem mérföldkő: 29,88% hitelesítve (2025). [71]
- Iparági bevezetés: 2025-ös előrehaladási pillanatképek és modulgenerációk. [72]
Lényeg
A rugalmas perovszkit laminátumok már nem csak tudományos-fantasztikum. Komoly állami finanszírozással, látható pilot projektekkel és gyorsan fejlődő kapszulázási technológiával jó úton haladnak afelé, hogy kiszolgálják azokat a könnyű, formakövető területeket, ahová az üvegmodulok nem juthatnak el – és mindezt vonzó gazdaságossággal, ha a tartóssági célokat sikerül elérni. Figyeljünk oda a gát minőségére, a laminálási feszültségre, és a független tanúsítványokra, amikor legközelebb „napelemes matrica” hírt látunk. [73], [74], [75]References
1. www.ft.com, 2. www.sciencedirect.com, 3. www.nature.com, 4. www.sciencedirect.com, 5. pubs.acs.org, 6. pubs.acs.org, 7. images.assettype.com, 8. link.aps.org, 9. en.ritsumei.ac.jp, 10. www.ft.com, 11. www.pv-tech.org, 12. techxplore.com, 13. www.theverge.com, 14. www.nature.com, 15. www.pv-magazine.com, 16. www.perovskite-info.com, 17. www.nrel.gov, 18. www.nature.com, 19. research-hub.nrel.gov, 20. www.nature.com, 21. images.assettype.com, 22. www.nature.com, 23. pubs.acs.org, 24. pubs.aip.org, 25. pubs.rsc.org, 26. en.ritsumei.ac.jp, 27. www.nature.com, 28. www.pv-magazine.com, 29. www.azocleantech.com, 30. www.nature.com, 31. techxplore.com, 32. www.sekisuichemical.com, 33. advanced.onlinelibrary.wiley.com, 34. automotive.messefrankfurt.com, 35. www.theverge.com, 36. pubs.aip.org, 37. pubs.acs.org, 38. www.nature.com, 39. onlinelibrary.wiley.com, 40. www.sciencedirect.com, 41. www.perovskite-info.com, 42. research-hub.nrel.gov, 43. www.nature.com, 44. en.ritsumei.ac.jp, 45. www.nature.com, 46. pubs.rsc.org, 47. www.perovskite-info.com, 48. www.pvtime.org, 49. www.theverge.com, 50. couleenergy.com, 51. en.ritsumei.ac.jp, 52. research-hub.nrel.gov, 53. www.azocleantech.com, 54. pubs.aip.org, 55. www.nature.com, 56. www.nrel.gov, 57. en.ritsumei.ac.jp, 58. techxplore.com, 59. www.pv-tech.org, 60. www.perovskite-info.com, 61. pubs.aip.org, 62. www.nature.com, 63. www.ft.com, 64. www.reuters.com, 65. www.theverge.com, 66. www.ft.com, 67. www.reuters.com, 68. www.nature.com, 69. www.nature.com, 70. en.ritsumei.ac.jp, 71. www.nature.com, 72. www.pv-magazine.com, 73. www.ft.com, 74. research-hub.nrel.gov, 75. www.perovskite-info.com